
jO-YUNCLASSIFIED

DSTOA6
CV,~~~ 4 I A L

N
* N ELECTRONICS RESEARCH LABORATORY

..0.

..... C o m m u n i c a ti o n s..
D i v i s i o n......

....
..

.....

.....&.
...

f l.

Pa......cia. L. ..nb

.Fet~

d

.....
.

©~~~~. COMNWAT OF.ASTRLIA199
MAY1990~. K .~~~2LL .p

A~~~roved ~~~..
...

z:
..es(it~, r.i

APPROVED~. FOR PULI.RLES

POSTAL ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~....... ADD..ESS:. Dietr Eletroic R..rc....t.y..Bx100.alsuySututrla,50
..

UNCLASS..F. ED.......

F

0
ERL-051 1-RE UNCLASSIFIED

0

0

0

0

0

0

0

0

0

0

I IMf~I A~I~I~fl --

UNCLASSIFIED ERL-051 1-RE

CONTENTS

Page No

LIST OF ABBREVIATIONS.. i

1 INTRODUCTION...I

*2 ADVANTAGES OF THE PC CONTROL PROGRAM .. 4

3 THE SIMULATOR MODE OF OPERATION .. 4

4 THE SIMULATOR CONTROL PACKAGE ... 5

5 USING THE SIMULATOR CONTROL PROGRAM ... 5
5.1 Program operating procedures ... 5

5.1.1 Invoking the program.. 5
5.1.2 Entering input from the keyboard.. 6
5.1.3 Frfering input from a file.. 13
5.1.4 Initiating communication with the simulator 16

*5.1.5 Simulator input measurement ... 16
5.1.6 Test set up.. 17
5.1.7 Menu options... 18

6 PROGRAM MODULE DESCRIPTIONS ... 20
6.1 Timing Considerations ... 20

*6.2 Module SIM.C .. 27
6.3 Module DATACOL.C... 27
6.4 Module UTILITIES.C ... 27
6.5 ModuleSCALER.C.. 27
6.6 Module FORMAT.C .. 27
6.7 Module .C ... 28
6.8 Module ASYNC.C... 28
6.9 Module CALIBRATE.C... 28
6.10 Module MENU.C ... 28

*7 SUBROUTINE DESCRIPTIONS... 29
7.1 Module SIM.C .. 29

7.1.1 MAIN()... 29
7.1.2 PROGOVERVIEWO ... 29
7.1.3 GETKEY().. .30

*7.1.4 TITLEPAGEO ... 30
7.1.5 TESTBEGIN()... 30

7.2 Module DATACOLC ... 30
7.2.1 GET_-INPUTO.. 30
7.2.2 FILEINPUTO... 31

*7.2.3 LISTFILES... 32
7.2.4 EDIT()..33
7.2.5 RETRIEVEDATAO ... 33
7.2.6 KEYBRD_INPUT().. 33
7.2.7 INITIALISEO .. 33
7.2.8 PARAMDATA()..4

ERL-051 1 -RE UNCLASSIFIED

7.2.9 GETENTRY()... 34
7.2.10 PRINTERRORO.. 34
7.2.11 ENTERCOM()... 34
7.2.12 GETCOMMANDO.. 36
7.2.13 SAVE FILE().. 36

7.3 Module UTILITIES.C... 37
7.3.1 UTILITIESO.. 37
7.3.2 CHANGE ... 38
7.3.3 CHANGEPARAMS().. 39
7.3.4 INPUTSTRING0 ... 39
7.3.5 DISPLAY0 ... 40

7.4 Module MENU.C ... 40
7.4.1 MENU_OPT0).. 40
7.4.2 BOOT... 41
7.4.3 MENUSO)... 41
7.4.4 HELPO ... 42
7.4.5 DRAWBORDER0 ... 42
7.4.6 MAINWINDOW().. 42
7.4.7 STATUSLINE().. 43
7.4.8 GPRINTF()... 43

7.5 Module FORMAT.C .. 43
7.5.1 FORMATDATAO .. 43
7.5.2 CONVERTTODECIMAL()... 44
7.5.3 PRINTMEASO)... 45

7.6 Module .C ... 45
7.6.1 COMS-INIT()... 45
7.6.2 COMSRESTOREO ... 45
7.6.3 SENDO)... 45
7.6.4 RECEIVEO ... 46

7.7 Module SCALER-C.. 46
7.7.1 SCALEINPUTO .. 46
7.7.2 SCALELEVELSO... 46
7.7.3 SCALEOFFSET()... 47
7.7.4 SCALE_DELAYO 48
7.7.5 CALC_FDCOE FF0).. 48
7.7.6 SCALEOSCO)... 49

7.8 Module CALIBRATE.C... 49
7.8.1 MEASAND..CAL()... 49

7.9 Module LOGGER.C... 50
7.9.1 LOQDATA()..9

8 FUTURE EDITING OF THE SOFTWARE .. 50

9 COSSOR SIMULATOR PROBLEMS ... 51

UNCLASSIFIED ERL-0511 -RE

* CONTENTS

FIGURES

Figure 1 Configuration of the ERL Automated HF Test Bed .. 2

* Figure 2 Proposed modified configuration for the ERL Automated HF Test Bed 3

Figure 3 Program functional breakdown .. 21

Figure 4 Data Collector functional breakdown .. 22

Figure 5 Controller functional breakdown .. 23

Figure 6 Fast Processing Unit Conversion functional breakdown .. 24

* Figure 7 Test Logger functional breakdown ... 25

Figure 8 Module data transfer and subroutine listing ... 26

S

D IC I43 Ll

By

* /

ERL-0511-RE UNCLASSIFIED

9

0l

UNCLASSIFIED ERL-0511 -RE

LIST OF ABBREVIATIONS

CCIR International Radio Consultative Committee
DDS Development Documentation System

* DSTO Defence Science and Technology Organisation
ERL Electronics Research Laboratory

PC Personal Computer
PTS Pilot Tone Sounder

I M SS0r

ERL-051 1-RE UNCLASSIFIED

iI

UNCLASSIFIED ERL-051 1-RE

0t

1 INTRODUCTION

The development of modems, scramblers, frequency hopping units etc, for HF channel operation

requires repeatable and comparative tests to be carried out under typical conditions. By using HF

* channel ionospheric simulators these tests can be carried out more cost-effectively and

conveniently without the need for the relatively expensive live-link tests which would
otherwise be necessary. Such simulators not only provide repeatable HF channel conditions,
they also permit some control of the link parameters - an aspect not readily achievable with
"live" circuits

i'The Automated HF Test Bed currently under development at the Electronics Research Laboratory
(ERL) uses a Cossor CSP1250 Ionospheric Simulator. The Test Bed also incorporates -ransmit and
receive modems, data error analysers (which generate and monitor a pseudo-random bit

sequence), and a Pilot Tone Sounder (which performs bit-error-rate analysis of the received
data). A functional diagram of the ERL Automated Test Bed is provided in Figure 1 overleaf. - .L

NOTE: It is intended in the future to modify the test bed so that the data collection and

analysis functions of the Pilot Tone Sounder will be incorporated into the simulator

control software. Figure 2, overleaf, shows the proposed modified configuration of
the test bed.

. ,

The Test Bed is to be used primarily as a research tool and a calibration facility for an

Intelligent Frequency Management System. It will also be used in a terrestrial transmission link
* model to be developed under the proposed Innovative Communication Architectures task. In \I

addition, the Automated HF Test Bed will provide a useful tool for the development and testing

of HF communications equipment.

The propagation model upon which the Cossor simulator is based is that defined by the
* International Radio Consultative Committee (CCIR) (HF Simulator model in question 21/3 of

the Geneva symposium). The simulator can reproduce various propagation effects, including
differential multipath delay, frequency offset, fading and noise, over either one or two

simulated HF links.

* Normally the Cossor CSP1250 simulator is controlled by an Epson HX20 microcomputer using a
program written in Epson Basic. For its use in the ERL Test Bed the simulator is to be controlled

by an IBM compatible PC via an RS232C port running at 4800 baud.

This document describes the software developed to support this application.

UNCLASSIFIED

ERL-051 1 -RE UNCLASSIFIED

ERRORMODE ANMOE

ANALYSRx. data Tx xk SIC

EROHRI

CANALYSER

Figre Cnfigto oHteEL uoae H et

UNCLASSIFIED EHL-051 1 -RE

*Toggle

IIONOSPHERICIBM RS 232CSPHER SIMULATOR 1
PRINTER PERSONAL RS 232C link SIM ut 2

COMPUTER I I

USB LSB
RS 232C link HF

EXCITER

DUAL BIT
ERROR RATE

COUNTER RF in RF

HF HF
• RECEIVER RECEIVER

MODEM

Rx. data Rx.clk.

DATA
ERROR

ANALYSER

BBE error

B LK error

* Figure 2 Proposed modified configuration for the ERL Automated HF Test Bed

ERL-'51 1-RE UNCLASSIFIED

2 ADVANTAGES OF THE PC CONTROL PROGRAM

The ERL-developed control program for the simulator is modelled on the program supplied by

Cossor in support of the Epson micro computer with which the unit is normally controlled. In
addition to retaining khe elementary features and capabilities of the Epson package the ERL PC
program provides a much enhanced more user-friendly operating environment for the test bed

operator. Also, many of the limitations of the Basic code are alleviated by the test bed PC
package which additionally facilitates the automated running of test configurations that have

been stored on disk. The PC package offers an improved display and access to more memory than
does the HX20 machine, with additional file and data manipulation capabilities. At some

later stage it will also include a data collection and analysis facility.

The PC program enables the operator to edit, display and otherwise manipulate all of the path

characteristics of the simulator. It is menu driven and incudes comprehensive help menus and

data manipulation utilities. Unlike the Epson program for which the operator is required to be
familiar with a number of specific keyboard responses and codes for the numerous controller

options, this package displays menu options at each sub-menu level. Menu options are activated

by function keys rather than by the specific ASCII codes of the Epson software, and the operator
is given flexibility to move between stages of the executing program.

The PC package is coded in Turbo C (version 1.5) with the asynchronous controller-simulator I/O
modules written totally in assembly code and compiled separately. I/O over the RS232C link is
interrupt-driven with transmit and receive data being stored in circular buffers which may be
rewound and accessed as required. 0

3 THE SIMULATOR MODE OF OPERATION

The Cossor simulator can be set up in either of the following two test configurations. 41

(a) One groundwave path plus four skywave paths, each of which can have a special path
delay and Rayleigh fade associated with it.

(b) Two groundwave paths which can be frequency offset from each other, plus two skywave 0

paths associated with each groundwa.t. These paths can have various fade, noise and
delay parameters assigned to them. In addition, a single oscillator tone (the frequency of
which can be specified by the operator) can be added to the signal and the gains of each
path can be changed. 0

The simulator also has an additional input to which an interference source or a recorded signal
may be added. This facility is useful when evaluating the performance of systems in the
presenre of noise.

UNCLASSIFIED ERL-0511 -RE

4 THE SIMULATOR CONTROL PACKAGE

The simulator control package gathers from the operator all the parameter data required to be

set up on the simulator for a test (or set of tests). This data includes relative strengths of

* groundwave and skywave signals, the signal-to-noise ratios for each path, frequency offset

between groundwave paths, skywave fade rates and skywave delay times. The operator also

specifies the time for each increment of the test parameter(s) and the value by which that
parameter(s) should be incremented or decremented.

* The control program scales this user data and calibrates it to conform with the simulator data
requirements. As part of this calibration the simulator measures the input signals that are

applied to it so that it can use these values to adjust internal parameters to achieve the required

test configuration. The program then sends all the calibrated data to the simulator via the
RS232C link. When prompted by the operator, the program signals the simulator to activate the

test configuration to perform the test sequence stored in memory and at the time intervals

specified by the operator.

As the test progresses the data is automatically logged. In addition the operator can select the

data to be output to a disk file or printer.

During test runs the operator has the option of resetting the simulator, restarting the test

sequence, setting the simulator to measure either input or output signals and of displaying all
parameters most recently sent to the simulator from the control program.

5 USING THE SIMULATOR CONTROL PROGRAM

This section of the document provides an operational description of the simulator control

* program.

For descriptions of the software modules and subroutines reference should be made to Sections 6

and 7 respectively.

• 5.1 Program operating procedures

NOTE: With all operator responses, the program will accept either upper or lower

case characters.

*5.1.1 Invoking the program

The program name is SIM. To invoke the program from DOS enter "sime" at the DOS

prompt. Once the program is invoked, the following screen message will be displayed.

__ ___ UNCLASSIFIFD

ERL-0511 -RE UNCLASSIFIED

IONOSPHERIC SIMULATOR CONTROL PROGRAM

Version 1.1

developed by:
P.L. Slingsby

August 1988

Terrestrial Transmission Systems
Electronics Research Laboratory

PO Box 1600
Salisbury

South Australia 5108

Next depress function key Fi to display an overview of the program. This overview consists of
six screen pages that may be stepped through by pressing any key to continue. When the last
overview page has been displayed the program will automatically continue. If it is desired to

exit from the program overview before the last page has been displayed, select ESC to advance
to the next stage of program execution.

If an overview of the program is not required, select any key (other than Fl). The screen will

then display the question

Input by keyboard <K> or file <F>?...

Enter K to create a new set of data or F if the input is to be recalled from disk

NOTE: Any other key depressed at this point will result in no reaction from the

program.

5.1.2 Entering input from the keyboard
If K was selected when the program was invoked the following prompt will be

displayed

one <1 or two <2> paths?...

This prompt allows the operator to simulate either non-diversity or diversity

operation.

4S

UNCLASSIFIED ERL-051 1 -RE

*5.1.2.1 Entering parameters
If non-diversity (1) is selected the following screen prompt will be displayed.

ENTER PARAMETER VALUES...
Relative level of ground wave 1?(dB,0 Is absolute) WI)
Relative level of skywave <10 (dB,0 Is absolute) jswi) -

Relative level of skywave <2;.? (dB,0 Is absolute) {SW2) -

Relative level of skywave <3,. (dB,0 Is absolute) (sw3) -

Relative level of skywave <40? (dB,0 Is absolute) jsw4) -

Frequency offset for path 1 ? (0 -:, 5000H-z) (ff01) -

Signal/noise for path 1? (0 - 70 dB) (sf1) -

Signal/interference for path 1? (as for s/n) IsIll -

Delay for skywave <1:l,? (0 - 1l.6mns In 0.lms steps) (dsli -

Delay for skywave <20. (0 -11.6mns In 0.1lms steps) (ds2) -

Delay for skywave <c30. (0 -11.6mns In 0.1lms steps) (ds3) -

*Delay for skywave <c40 (0 - 11.6mns In 0.1lms steps) (ds4) -

Rayleigh fade rate for skywave <1> (0 -80 Hz) (fsl) -

Rayleigh fade rate for skywave <2>? (0 - 80 Hz) Ifs2) -

Rayleigh fade rate for skywave .0 (0 - 80 Hz) (Ws) -

Rayleigh fade rate for skywave <c40 (0 - 80 Hz) (fs4)
* Fl-HELP

If diversity (2) is setected the following screen prompt will be displayed.

ENTER PARAMETER VALUES...
*Relative level of ground wave 1?(dB,0 Is absolute) jgwl) -

Relative level of skywave <1:,? (dB,0 Is absolute) (swil -

Relative level of skywave <2:.? (dB,0 Is absolute) (sw2) -

Relative level of groundwave .c2?(dB,0 Is absolute) (gw2) -

Relative level of skywave <c30. (dB,0 Is absolute) jsw3) -

*Relative level of skywave <c43.? {dB,0 Is absolute) fsw4) -

Frequency offset for path 1 ? (0 ->n+/-5000Hz) (fol) -

Frequency offset for path 2? (0 ->.+I-5000Hz) (ff21 -

Signal/noise for path 1? (1,0 or In dB) (sn1) -

Signal/noise for path 2? (1,0 or In dB) (sn2l -

*Signal/Interference for path 1 ? (as for s/n) (slill -

Signal/interference for path 2? (as for s/n) (s12) -

Delay for skywave <c10 (0 - l1.6ms In 0.lms steps) (dsll -

Delay for skywave <c20 (0 - 11.6mns In 0.lms steps) (ds2) -

Delay for skywave 40~ (0 - 11.6mns In 0.lms steps) (ds3J -

Delay for skywave c4> (0 - 1l.6mns In 0.lms steps) (ds4l -

Rayleigh fade rate for skywave <c10 (0 - 80 Hz) PfSI)
Rayleigh fade rate for skywave <20? (0 - 80 Hz) (Ws) -

Rayleigh fade rate for skywave <10? (0 - 80 Hz) ftW) -

*Rayleigh fade rate for skywave <c40 (0 - 80 Hz) (fs4) -

Fl-HELP

ERL-051 1 -RE UNCLASSIFIED

The operator must now enter the desired parameter information at each

level of the prompt as it progresses down the parameter list. As each

value is entered the ENTER key must be selected. Use the backspace to

edit keying mistakes.

As can be seen from the displayed prompts, legal values are given for each

parameter. Value "0" indicates that there is no path, therefore if

skywave 1, for example, was given the value 0 then assigning a delay to

skywave 1 would have no effect. The character "I" may also be used for

signal-to-noise and signal-to-interference parameters to indicate a value

of infinity.

If an invalid value is entered it is erased automatically and the prompt

"re-enter" displayed in its place for two seconds. The operator must then

enter the correct value for that parameter. At any stage during the process

of entering the parameters the operator may invoke the HELP option by

selecting Fl. An explanation of the valid parameter limits can then be

viewed.

NOTE: If it is required to edit a value already entered and accepted

by the program then all subsequent parameter values must be

entered before the mistake can be corrected. To edit select

function key F3.

5.1.2.2 Entering the test command

Once the last parameter entry has been made, one of the following prompts

will appear at the bottom of the screen. (The first prompt is displayed in

the nondiversity case, the second in the diversity case.)

Enter test command: <param:, <init val:, <final valb

<Inc*<tImex

Enter test command: cparam[¶m], cinit vab. cflnal vaho

cinc <timei

The operator must now enter a test command in the requested format. A

valid test command comprises the following:

cparam:p the parameter code - a valid test

command of the parameter to be changed during the test, as

displayed under the "Enter Parameters Values" prompt, eg.

snl for signal/noise path 1.

<inlt vab = the initial value that the parameter is

to take (in the units specified in the prompt, eg. for sni, dB).

8 UNCLASSIFIED

UNCLASSIFIED ERL-051 1-RE

cflnal val> = the final value (in specified units) that

the parameter is to take.

<timeo = the time that each incremented stage of

the test is to last. Enter in minutes as a real number, eg. for 5
min 15 s, enter 5.25 min.

In the case of diversity operation the operator may also request that two

parameters be changed simultaneously (the <param[&

param]>command).

This facility allows the operator to test the behaviour of the two paths
under different conditions but over the same incremental values of a

separate parameter, eg. to test the behaviour of two paths with different
delays as the signal-to-noise is stepped from 0dB to 60dB for both paths.

Thus the test command "snl & sn2 10 60 5 5", requests that the signal-to-

noise ratio of paths 1 and 2 be stepped from 10dB to 60dB in 5dB increments

every 5 minutes and is a valid command for the diversity case. It would
not be valid for the non-diversity case, however, because sn2 is an invalid

* command for this mode and also because the "&" character is not allowed
in nondiversity command lines.

If an invalid command line is entered then an error message will appear

for one second and the operator will be instructed to re-enter the command
line. The operator may consult the HELP menu, if required by selecting the

function key F1.

5.1.2.3 The Utilities Options

Once the command line entered by the operator has been accepted as valid

the following display of the available utilities options will appear on

the screen.

F1 - HELP

* F2 - SAVE AS TEST <

F3 - CHANGE PARAMS
F4 - FILE

F5 - DISPLAY
F6 - REENTER COMMAND

* F7 - ADD OSC TONE TO TESTS

F8 - ADD PATH GAIN

A description of each option is given below.

ERL-051 1-RE UNCLASSIFIED

Fl -HELP

This option is available from almost anywhere in the program. It

comprises a number of menu and sub-menu options that can be invoked to
display information on keyboard responses at various stages throughout
the program execution, utility selection and other menu options. The
operator can exit from the HELP option at any time by selecting ESC.

F2 - SAVE AS TEST

This option saves all the parameter and command line data currently

displayed on the screen as well as the current values for oscillator tone and
path gain(s) entered under options F7 and F8 - (these values are 0 and unity
respectively by default). When invoked, option F2 causes the screen
message "Saving Test ctest number:." to be displayed. After a test
has been saved it can still be changed using the other options described

below.

NOTE: If a test is not saved before proceeding further that data will

be overwritten by subsequent data.

F3 - CHANGE PARAMS

This option enables the operator to edit the previously entered parameter
information that is displayed on the screen. The 'up' and 'down' arrow

keys are used to move the cursor to the relevant entry where the new data

is to be entered. When editing is complete select ENTER and the program
will prompt the operator to reenter the appropriate command line. When

this has been entered the program resumes.

F4 - FILE

This option files all the tests that have been entered and saved. When

selected the following prompt is displayed.

"Do you wish to change this data? (Press cY:, <N> or F1 to
display tests)"

If it is required to change data, ie. Y is selected, the following prompt is

displayed:

"Which test? (Enter number of test, F1 to display all, or ESC to
exit)"

.. _._ . n,.....-II -l.k

UNCLASSIFIED ERL-051 1-RE

Here the operator must enter the digit corresponding to the number of the

* test to be edited. If unsure of the number select F1 to display all saved

tests. If an invalid number, ie. a test that does not exist, is entered the

following error message will be displayed:

"There Is no test <test number> in this file! Press any key to

* return..."

Once a valid test number has been entered, the following screen prompt

appears.

"Do you wish to change params cP>, oscillator tone <T2., path

gain <G>m-, or command line <C>?.."

This option gives the operator the opportunity to change the information

to be filed. Select P to edit the parameter information, C to edit the test

command line, T to edit the oscillator tone frequency and level, or G to edit

the path gain.

If P is selected the relevant parameter proforma is displayed with the

* current parameter values shown. The operator then simply edits this list

using the 'up' and 'down' arrow keys to move the cursor to the relevant

parameter value. Select ENTER when editing has been completed.

If C is selected the command line prompt relevant to the current mode

* (diversity or nondiversity) is displayed. The operator then simply enters

the new test command.

If T is selected the operator is prompted to enter the oscillator frequency

and level (in volts).

NOTE: Once the oscillator tone has been changed, the new data

remains valid for all subsequent tests until changed again. To

remove the oscillator tone for a subsequent test, the level must

be changed to 0 Volts.

If G is selected the operator is prompted to specify which path gain

should be changed from unity (the default), ie. for signal select "S", for

interference path select "I".

After the requested changes have been made and accepted by the program,

the new data is displayed to the operator in the form shown under F5-
DISPLAY below.

S

,__UNCOA SFEF, "

ERL-0511-RE UNCLASSIFIED

The operator is then asked whether additional editing is required. If

further editing is required (Y selected) the above procedure is repeated. If

no further editing is required (N selected) the following prompt is

displayed.

"What file name shall this data be flied under? Press <ENTER>

for no save..."

If the operator selects a file that already exists a prompt will appear to

ask whether the existing file should be overwritten.

F5 - DISPLAY

This option permits all the data that have so far been saved using option

F2 to be displayed. The format is as shown in the example below. Since

only two tests are displayed at a time the operator must step through the

screen to show all the test data stored.

TEST 1 2

gwl 1.0 20.0

swi 2.0 20.0 S

sw2 0.0 10.0

sw3 0.0 0.0
sw4 0.0 0.0

fol 50.0 50.0
snl 20.0 25.0 5

sil Infinite 30.0

dsl 0.55 0.25

ds2 0.0 0.5
ds3 0.0 0.0

ds4 0.0 0.0

fsl 10.0 10.0

fs2 0.0 10.0
fs3 0.0 0.0

fs4 0.0 0.0

gw2 0.0 20.0

fo2 0.0 0.0

sn2 0.0 25.0

s12 0.0 Infinite

osc freq 5.0 0.0n

osc level 1.0 0.0
test command snl 20 60 5 5 gwl&gw2 5 20 5 5

When viewing is complete select ENTER to continue to the next stage of

program execution. 0

12-1M- SII

UNCLASSIFIED ERL-0511 -RE

F6 - REENTER COMMAND

This option allows the operator to reenter the command line for the current

test. If this option is invoked at a stage of the program execution when it is
not available, then it is ignored. When this option is selected the

previously entered command line disappears and is lost. If this option is

* invoked by mistake, the command line must be reentered.

F7 - ADD OSC TONE TO TESTS

This option allows the operator to add an oscillator test tone to the input.

The operator is initially prompted for the desired frequency and level

(between 0 and 5V). This tone will be digitally added to the input signal.

The operator is next prompted to specify the time period (in seconds) over

which measurement of the input signal is to be made by the simulator.

• This measurement is required so that the simulator will be rescaled and
recalibrated to allow for the additional tone.

F8 - ADD PATH GAIN

* This option allows the operator to alter the gain of the programmable
gain unit at the front end of the simulator. By default this parameter is
set such that the input gain will be unity, however, it may be adjusted
between 1 and 100 (in integer values only). As the requested gain may not
equal that calculated by the program (since not all gain values are
physically available), the gain achieved is displayed to the operator.
Again, measurement of the input signal will be necessary for the purposes

of rescaling and recalibration so the operator is prompted to specify the
time period over which this measurement should be averaged.

5.1.3 Entering input from a file
If, at the prompt "Input from keyboard <K> or file <F?...", F was selected,
indicating that input should be from a disk file, then the following menu options
will be displayed on the screen.

F1 - HELP
F2 - LIST
F3 - VIEW
F4 - EDIT

* F5 - SAVE
F6 - DELETE
F7 - ADD TEST

F8 - RENAME
F9 - CONT

UNCLASSIFIED 13

ERL-051 1-RE UNCLASSIFIED

A description of each of the above options follows.

F1 -HELP

This option performs the same function as that described above for the utilities

options (page 10).

F2 - LIST

This option allows all files in the test directory to be listed, together with their
creation date and time. After this option is selected the program returns to the

point where the operator is prompted to indicate whether input is to be via file or
keyboard.

F3 - VIEW

This option allows the operator to view the data in a particular file. The operator

is prompted to enter the name of the file to be viewed. Once the name is entered the

contents of the file are displayed on the screen in the same format as the DISPLAY

option of the Utilities Options (page 12). After the operator has finished viewing
the relevant file the program returns to the initial stage where the operator is
prompted to indicate whether input is by file or keyboard. This facility allows the

operator to enter new data if it is found that no appropriate file exists.

S

F4 - EDIT

This option provides the means by which the operator can edit the data stored in a

particular file. The operator is first prompted to enter the name of the file to be
edited. Next the operator is prompted with questions regarding which test of that

file is to be edited, which type of data within that test is to be edited and so on, in

the same fashion as the Utilities Options function F4 - FILE described on page 10. It
should be noted that changes made to this file are not changed on the hard copy but
are stored in memory to be used on this run of the test(s) only. To record these

changes permanently it is necessary to invoke the SAVE option F5. The program •
therefore returns to the file menu for this reason.

F5 - SAVE

When this option is invoked the operator is prompted as to whether any further 0

editing is necessary. If not, then the operator is prompted to supply the name of the
file to which the edited data should be saved. As with the keyboard data case,

the operator has the option of not saving the changes. If the file named already

exists then the operator is queried as to whether the old file should be overwritten.

14 UNCLASSIFIED

UNCLASSIFIED ERL-051 1-RE

* If there has been no alteration made to the original file data then a message
indicating this is displayed on the screen.

F6 - DELETE

* Selection of this option deletes the file named by the operator. Before the deletion

occurs, however, the operator is prompted to confirm the intention to delete the
named file, by the on-screen prompt,

"Delete filename?[YIN]..."

If Y is selected t*.a file is deleted. If N or any other character is entered at this

stage the command is ignored and no further action is initiated.

* F7 - ADD TEST

This option allows the operator to add a test(s) to the end of an existing file. The

operator is first prompted to supply the relevant file name. The program then

changes to the keyboard entry mode and parameter data may be entered in the same
* way as described on page 8 for keyboard entry. All the Utility Options described

previously are also available to the operator to facilitate data entry. Unlike the
keyboard case, however, the program does not proceed to run the tests after all

editing has been completed. Instead it returns to the file menu.

F8 - RENAME

This option enables the operator to rename a file. When first selected the operator
is prompted to enter the old file name. Next the operator is prompted to enter the
new file name. This renames the file.

F9 -CONT
This option provides the only means to continue past the file menu when in the

* "input via file" mode. Since many files may have been entered into memory

through the various editing options, the operator is first prompted to indicate the

name of the file containing the tests that are to be run. These tests are then loaded

into memory. If an invalid file name is entered by the operator or the named file
has, for some reason, not been able to be opened, then an error message is displayed

* and the operator is prompted to re-enter the relevant file name.

ERL-0511 -RE UNCLASSIFIED

5.1.4 Initiating communication with the simulator

With the data for the test(s) to be run now in memory (having been entered either

by the keyboard or from file), the program now needs to determine where the
logging data should be sent. The following prompt is now displayed to the operator.

"Test data log to printer cP>, to file cF>, or to screen <default>?..."

NOTE: By default the logging data is always sent to the screen. The operator,

however, has the option of selecting either "P" to indicate that the
data should also be recorded on a printer (connected to parallel port 1),

or F to indicate that the data should also be logged to a file.

If F is selected (the data is to be logged to a file) the operator is next alerted by the

following screen prompt

"What file name?".

The name of the file to which the logging information is to be sent should then be

entered.

NOTE: The program accepts any file name that is valid under DOS.

After entering the file name the operator is prompted as follows to specify whether
the test (or sequence of tests) should be repeated continuously or executed once only.

"Do you want these tests to continue Indefinitely [Y/N]??"

The default response is N (no). It should be noted that under these circumstances,
although the program will cease executing after the test(s) in memory have been
executed once, the simulator will remain operating and set up to the last test
configuration that was run.

If the Y (yes) response was selected, ie. the continuous execution mode is invoked,
then the following on-screen prompt is displayed.

"<<<The tests may be stopped by pressing F1O-QuIt>>>".

5.1.5 Simulator input measurement

After the operator has specified where the logg'ng information is to be sent, and
has specified a continuous or once only mode of test operation, there is a small delay

while the parameter data is transferred to the simulator via the RS232C link.
When this data has been successfully communicated the following on-screen prompt

appears.

16 LN A !'S_ J Fj-

UNCLASSIFIED ERL-0511-RE

"Apply signal and enter RMS period (secs) for INPUT measurement..."

NOTE: The simulator needs to make internal measurements of the input signal

(and the interference signal, if applicable) so that it can calibrate path

parameter values. It is therefore important that the signal level

measured by the simulator is that which will be applied to the

simulator during the test sequence - a measurement of input signal levels

must be made each time the level is changed to ensure that the desired

test configuration is set up.

The operator must next specify the time period (in seconds) over which this

measurement should be made. A measurement is made by the simulator every second

so that an operator response of "5" would caus(the simulator to make five
measurements of the input signal and average the results over five seconds.

• Instead of a number, the operator may enter the character "C". This causes the

simulator to perform measurements continuously until sigitalled (by any operator
keystroke) to stop. Each measurement made in this way is displayed on the screen,

thus allowing the operator to adjust the signal level whilst noting the simulator

readings.

Next the simulator measures the interference input level. The operator is again
prompted, as follows, to enter the period over which this measurement should be

averaged.

* "Apply signal and enter the RMS period (secs) for INTERF
measurement..."

The same options are now available to the operator as were available for

measurement of the input signal. It is important that measurement of these two
signals is correct since they form the basis for calibration of the simulator internal

parameter values.

NOTE: On occasions the simulator may mis-measure these signals. It is

important therefore to ensure that these values look correct, otherwise

the test configuration will not be that requested and it will have a

different signal-to-noise ratio than expected.

5.1.6 Test set up

* Once the input and interference measurements have been entered, the test(s) is now
ready to begin. The following on-screen prompt will be displayed.

"Test <test number> Is now ready to start.

Press any key to begin..."

ERL-051 1-RE UNCLASSIFIED

With the 'begin' function initiated, the test progression is then logged to the screen.

The current test parameter values, the code for the parameter(s) being incremented,

the current value for that parameter(s) and the time at which the current stage of

the test sequence was initiated are all displayed to the operator.

NOTE: The starting time for the test(s) is not the time when the operator

signals the controller to start, but is the instant recorded in the time

column of the logged data. The variable nature of the simulator

asynchronous communication with the controller program makes it

impossible to accurately predict the time interval between when the

program signals the simulator to start and when the simulator actually

responds.

5.1.7 Menu options

As the test(s) progress the following menu options appear at the bottom of the

screen. They can be invoked by the operator at any time available to the user.

Fl-HELP F2-RESET F3-BOOT F4-DISPLAY F5-MEASURE F6-
RESTART F8-GAIN F10-QUIT

A description of each option is given below.

NOTE: If a menu option is invoked at a time when the test is timed to alter a

parameter(s), the test will not implement the change until the menu

option has been executed. This means that although the operator can

invoke menu options whilst tests are in progress without disturbing

their automatic progression, the possibility of interrupting a test

transition does exist. By observing the test p; ogression the operator can

lessen the likelihood of interrupting the test.

F2-RESET

This option allows the operator to manually reset the simulator, thus allowing a re-

initialisation of the fading, noise and phase conditions. Perhaps not so relevant in

an automated system, this option can nevertheless be useful when testing different

equipment with the same sequence of fading and noise when the system is utilised in

manual mode. The only evidence the operator is given of action taken by this option

is a an audible discontinuity in the audio output of the simulator.

F3-BOOT

Selection of this option sends all the current parameter values for the current test

stage to the simulator. This enables the operator to restore the simulator conditions

if, for example, the operator suspects that the desired test configuration has not

been achieved.

________~~~~ _________ jtCLASRqiFiFfl

UNCLASSIFIED ERL-051 1-RE

F4-DISPLAY

When this menu option is invoked two further options (F1 and F2) are displayed to

the operator. By selecting F1 the operator can view the current test parameter

values - these are displayed in the format shown on page 12. By selecting F2 the

values of the sixty four parameters last sent to the simulator are displayed.

FS-MEASURE

With this option the operator can instruct the simulator to make internal signal

* measurements.

When this option is selected four further options (F1, F2, F3 and F4) are displayed

to the operator.

* • To measure the input signal select option F1

* To measure the interference signal select option F2

* To measure output signal 1 select option F3

• To measure output signal 2 select option F4

* Once the relevant signal has been selected the operator is next prompted to enter

the period over which the measurement should be averaged. This is performed in

the same way as the simulator input measurement selections described in paragraph

5.1.5 above.

• NOTE: If continuous measurement is required, again enter C.

Measurements made by the simulator are displayed on the screen in rms volts for the

input signals, or in dB for the output signals. The program will automatically

signal the simulator to recalibrate its internal path parameters to reflect any

change in input !cvcl.

F6 - RESTART

• This option allows the operator to restart the current test. This is a very useful

option when trying to synchronise the system. After a RESTART command the

testing sequence proceeds as normal.

ILLICLA.SUP1~fl

ERL-051 1-RE UNCLASSIFIED

F8 - GAIN

This option allows the operator to set the programmable gain unit in the same
manner as the Utilities Option F8-ADD PATH GAIN (refer page 13). It must be
noted, however, that since disk files do not store the programmable gain value,

each time a file is recalled it is assumed to be the default value of unity. The
operator has, of course, previously been given the opportunity to set the path gain
(whether input was from the keyboard or from a disk file).

FIO-QUIT

Select this option to exit the program. When selected the operator is prompted to
confirm this intention. If confirmation is not correctly given then the request to exit
is ignored and program execution continues as before. If the operator confirms the
wish to exit then the on-screen warning "Exiting!!" flashes for several seconds and
the program terminates. Once the program has ceased to execute, whether by
selecting the QUIT command or at the completion of a test, the simulator will
remain configured with the last parameters that were sent to it by the controller
program until switched off.

6 PROGRAM MODULE DESCRIPTIONS

The system controlling program comprises a number of function-specific modules. Figure 3
overleaf provides a functional breakdown of the overall program whilst the associated Figures
4,5,6, and 7 provide breakdowns of the main functions and show the software modules associated
with each. Figure 8, in addition to providing a list of the subroutines in each module, also shows
the data transfer between modules. Each of the modules is described briefly in paragraphs 6.2 to
6.10 below.

NOTE: For a description of the associated subroutines reference should be made to

paragraph 7 below.

6.1 Timing Considerations
It is a requirement of the test bed Pilot Tone Sounder (PTS) that input to the ionospheric
simulator be disconnected for five minutes every sixty minutes so that true noise floor
measurements of the system can be made. It is therefore necessary that the simulator
controller be time-synchronised with the PTS and also that the controller operate an
analog switch to disable the input to the simulator for the required five minute period.

NOTE: While the initial controller software included the control of the analog
switch, during subsequent development of the project this function was deemed
unnecessary.

20 UNCLASSIIED

UNCLASSIFIED ERL-051 1 -RE

From Pilot N
Tone Sounder ~~~I

Formatted
ColcieCONTROLLER PUarm] SIMULATOR

For functional breakdown
refer to Figure 5REODN

DISPLAY.........

DATA
COLLECTOR d

Contolle '~'refer to
USER mdmeasure data]- ''

Test user

down-data:For functional breako Mesue
refer to Figure 4

........................

FAST
Calibrated a.A aPROCESSING

data ~ UNIT (FPU):aa

1W CONVERSION
Unsaled dataaaa aaaA.

A

aFor functIonal breakdown'.*SWd i refer to Figure 6

EQUIPMENT
UNDER DAA SWIC SIMULATOR

.: * *.*.*...*..*SIGNAL

TEST v~*......INPUT
Basebnd . :/~.Switched baseband

tranmittd :* :*.:. tansmitted data

0Figure 3 Program functional breakdown

ERL-051 1 -RE UNCLASSIFIED

........................ *..*....* ..
Collective

Pinput

DATA ORGANISAION -W CONTROLLER
.- (Module DATACOL.C)

Progress Action

input request

Test information

W/O request I

USER

(Module UTILITIES. C)

DISPLAY

Parameter

information

I - ,:,,:.::, CONTROLL.ER

Mewaured
data

Figure 4 Data Collector functional breakdown

UNCLASSIFIED ERL-051 1-RE

_Cont'oller

command

CONTROLLER

Formatted

* input
CONTROLLER VE ,W_

EA ctioned

* FORMATTER I/O CONTROL
(ModuleFORMAT.C) (Modul.es parms. CONTROL1W IO.C and P aa O T O

ASYNCH.C)

• data

CONTROLLER

Unscaled Calibrated
datadata - satusa

SCALER CALIBRATOR TEST LOGGER

* Figure 5 Controller functional breakdown

- - I fffI h i rIn ^________________

ERL-0511 -RE UNCLASSIFIED

'AAAAAAA^ A A ^^AA

"'(Module SCALER.C)"" Test user

FORMATTER

.... l Measurement[

ddata

CALIBRATOR FORMArrE
(Module CALIBRATE.C)

Calibrated

I data I

Figure 6 Fast Processing Unit Conversion functional breakdown

UNCLASSIFIED ERL-051 1-RE

tj'd/tttltlllt/ttt I

%x\'.x %%%% % % % % % %\% N N '. N

Test status N NN'N..

*~ dat

CONTROLLER %
CONTR LLER........................... 1 1 I I i t.. .l l. . i l l .-

NNNNNNNNNN'.NNNNNNNNNNNNNN

.... gg ed dat
,,,,, TEST LOGGER

,, Module LOGGER.C))'- -,'-, RECORDING
It1. 1 . DEVICE

FAST'..........
FAST NNNNNN%% NNN

PROCESSING %N N NN N N NN N NPROCESS G............ ,.............
UNIT % % % % % % % % % % % %

NNNNNNN. N.'. N.'. N N N......

% % %%% % % % % % % %

*Figure 7 Test Logger functional breakdown

444444 44444 444444 4442S

ERL-051 1 -RE UNCLASSIFIED

MENU.C
Menu opt(0
Boot ()
Menus (
Help ()
Draw border (
Mainwindow (
Statusline (
Gprintf ()

ASYNC.C
_______ ______Initv (
DATCOLC SM.CRestv (DATACOL.C *Txstr (

Get input () Mai Rxstr(
Initialise () Prog overview ()*Txrsh (
Parani-data(Get key (),* Rxfsh)
Entercom ()Title page (
Get .entry ()Test begin ()*Dentes assembly
List - iles ()rotns
File input0
Key;brd -input (0 IO.C
Edit () Cornsinit (
Retrieve data () Corns restore (
Print -errorSn6

e_ commando Receive(
Save-ile ()

UTILITIES.C FORMAT.C
Utilities

owFratdt(Change (omaaa(
Changeyparams ()Convert .to decimnal 0
Input strin ()Pi9es0
Display ()

SCALER.C CALIBRATEC LOGGER.C
Scale input ()
Scale levels ()Meas-and _cal ()Log data (
Scale ofiset (
Scale-delay()__________________
Calc fdcoeT (
Scale osc (0

Figure 8 Module data transfer and subroutine listing

26 UNCLASSIFIED ___

UNCLASSIFIED ERL-051 1-RE

The controller must also be able to signal to the PTS when the simulator has been reset or
when a new test configuration has been implemented. The simulator has a non-negligible
response time to commands generated by the controller program and there is also a time

delay associated with the transfer of data over the RS232C link. Consequently, there
must be a communication link between the controller and the PTS in order to avoid

* unnecessary corruption of the PTS logged data when the simulator is in a transition state.

The impending modifications to the system (referred to in the Introduction), will relieve

the need for PTS-controller synchronisation.

6.2 Module SIM.C
* This module contains the "MainO" subroutine. It controls the program flow to the

DATACOL.C; SCALER.C; IO.C; FORMAT.C; CALIBRATE.C; MENU.C and LOGGER.C
modules. It also contains all the routines necessary to set up the graphics windows that are
used throughout the program. The test for the overview of the program, which may be
invoked at the beginning of a run to display information regarding the use of the program

* (program overview), is also included in this module.

6.3 Module DATACOLC
This module contains routines that are used to extract from the operator all necessary
information about the automated tests that are to be run. The module is only called from

SIM.C, which passes DATACOL.C no data. All input is from the operator, who is given

the option of entering the necessary data either from the keyboard or from a disk file.
Once all the data has been entered into memory and any necessary editing completed (via
module UTILITIES.C) module DATACOL.C passes program control back to "MainO" in

SIM.C.

6.4 Module UTTUITIES.C
This module contains the routines that allow the operator to edit, display and otherwise
manipulate the test data. It is called from DATACOL.C, which passes any necessary

* parameters for the manipulation that are not already in memory. Depending on the type
of manipulation performed, UTILIES.C may pass an integer back to DATACOL.C.

6.5 Module SCALER.C
This module contains all the routines that scale the values entered by the operator and

* convert them into the long integers expected by the floating point unit (FPU) of the

simulator. It is called only from module SIM.C, which passes to SCALER.C the test
parameters that must be scaled and the values that these parameters must take. On

completion of the scaling process this module returns to SIM.C.

* 6.6 Module FORMAT.C

This module contains the routine "formatdata0" only. It is called either from module

SIM.C or from CALIBRATE.C. The routine constructs the required controller command in an
ASCII format acceptable to the simulator. The module is passed an integer representing

the instruction type required, and depending on this integer, may be passed additional

ERL-0511 -RE UNCLASSIFIED

data. Once the ASCII instruction has been constructed module IO.C is called to
communicate with the simulator.

6.7 Module IO.C
This module contains the routines that control communications over the RS232C link, by
invoking the relevant assembly routines of module ASYNC.C. It is called from either
MainO, in SIM.C, or from the FORMAT.C module.

6.8 Module ASYNC.C
This module contains the assembly language routines that control the RS232C
communications between the simulator and the controller. It comprises routines to
initialise communications, to transmit and receive characters, to flush transmit and

receive buffers, and to restore the program after communications.

6.9 Module CALIBRATE.C
This module contains the subroutine"measandscalO" only. It instructs the simulator to
make a measurement of the simulator input signal(s) and then calibrates the measurement
communicated to the controller by the simulator. This value is then sent to the simulator
(via module IO.C) so that internal calibrations may be made within the simulator.

6.10 Module MENU.C
This module is called from the SIM.C module to implement user menu requests or to display
the help menu, or from the DATACOL.C or UTILITIES S.C. modules. The module is passed
information indicating the menu item to be implemented, or the help screen to be

displayed. After completion of the necessary action the module does not pass any data

back to the calling routine.

Except for module ASYNC.C, each of the above modules is compiled and linked by the Turbo C
MAKE filelsim.mak. The"sim.mak" file consists of a number of rules for compiling each of the
above modules into object files. It also includes the rule for linking the modules together to form

the executable ".EXE ° file. By using this utility, only the files that are altered need to be
recompiled because Turbo C looks at each object file in a rule and recompiles only if there has

been a recent change to that file. Similarly, Turbo C only relinks a program if there has been a
change affecting the linking rule(s) included in the ".MAK *file.

Module ASYNC.C is compiled separately from the other modules by the Microsoft assembly

compiler MASM 5.1. The object file 'async.obj' is then included in the relinking rule in the file
"sim.mak'.

NOTE: It is important to remember that every time a change is made to ASYNC.C the file

must be recompiled using an assembly compiler, otherwise "sim.mak" will relink the

old version.

S

UNCLASSIFIED ERL-051 1-RE

S

7 SUBROUTINE DESCRIPTIONS

The following is a brief description of the subroutines contained in each of the modules described

in Section 6 above. Should a more detailed description and comprehensive flow charts for each

subroutine be required refer to the associated Development Documentation System (DDS)
material held by the author.

7.1 Module SIM.C

* This module contains the following five sub-routines.

" MAIN ()
* PROGOVERVIEW 0

* GETKEYO

* 0 TITLEPAGE(
" TESTBEGINO

7.1.1 MAIN()

0 Called on program start up. No parameters passed to the function.

Calls functions titlepage(, get-inputO, comsinitO, sendo, scaleinputo,

format_data(, measand calO, testbegin(, log-data(, menuopt(,

comsrestoreO.

10 Description - Displays title page (function title-page)) then gets input for the test

sequence to be run from the operator (function get-inputO). Next it initialises

programmable gain unit values to unity and installs interrupt service routine and

initialises communications over the RS232C link (function comsinitO). Sends a

command to initialise the simulator (function sendO) and scales all initial

parameter values (function scale inputO). Then formats and sends all these scaled

parameter values to the simulator (function formatdata0). Makes measurement of

input signals and calibrates the relevant path data (function measand_calO) then

indicates to the operator that the test sequence is ready to be run (function

testbeginO). Displays menu options then for each test increment scales, formats and

sends to the simulator the relevant parameter data, and then logs the progress of

the test sequence (functions scale_inputo, formatdataO and log-data()

respectively). While waiting for test time to elapse checks if a menu option has

been chosen by the operator and if so invokes the relevant option (through function
menuoptO).

7.1.2 PROG_OVERVIEWO

Called from function MainO. No parameters passed to the function.

Calls no other function.

ERL-051 1-RE UNCLASSIFIED

Description - Displays up to six screens describing the operation of the program to

the operator. The screens may be stepped through or exited from.

7.1.3 GETKEYO

Called from MainO, utilitieso, getinputo, menu().

Calls no other function.

Description - Returns the relevant part of the integer value of the key invoked by

the operator.

7.1.4 TITLEPAGEO

Called from MainO. No parameters passed to the function.

Calls function prog-overview0 if instructed by operator.

Description - Displays title screen page outlining program title and authorship. If

operator specifies, calls progoverviewO, otherwise returns to mainO.

7.1.5 TESTBEGINO

Called from MainO. No parameters passed to the function.

Calls no other function.

Description - Displays a message to the operator indicating that the test sequence

can now be started. Waits for the operator to press a key to return to MainO.

7.2 Module DATACOLC
This module contains the following thirteen subroutines.

" GETINPUT 0

• FILE_INPUT 0
" LISTFILES 0
" EDIT(0

" RETRIEVEDATA 0
* KEYBRDINPUT 0
* INITIALISE 0
* PARAMDATA 0
* GETENTRY 0
* PRINT -ERROR 0
" ENTERCOM 0

* GET-COMMAND 00

" SAVEFILE 0

7.2.1 GETINPUT0

Called from MainO. No parameters passed to the function.

Calls functions keybrd_input0, fileinputO, getkeyO. S

UNCLASSIFIED ERL-051 1-RE

* Description - Operator chooses whether input is from a file, in which case

filejinput0 is called, or from the keyboard, in which case function keybrd-input()

is called. If an invalid key is pressed at this point the operator is again prompted
to make this choice. The operator then nominates whether the output should go to a
file (in which case the file name must be supplied), to a printer, or to the screen (the

default). The operator must finally specify whether the test sequence should run

continuously.
The program returns an integer signifying the number of tests that were entered into

memory (variable "count").

7.2.2 FILEINPUTO
Called from get-inputO. The address of parameter "repeat", indicating whether

the current program loop in getjinput() should be repeated, is passed to the function.
Calls functions getkeyO, helpO (in module MENU.C), listfilesO, retrievedata),

* displayO (in module UTILITIES.C), changeO (in module UTILITIES.C), edito,
savefileO, initialiseO, param_dataO and entercomO.

Description - Displays file menu options to the operator (refer to paragraph 5.1.3

for description of these options). Sets function loop flag "get-choice" to FALSE and

* invokes relevant file menu option.

Fl-HELP

Saves text, calls helpo, then restores text screen and sets "get-choices" to TRUE.

F2-LIST

Calls list-filesO.

F3-VIEW

Calls retrievedataO and if this routine returns a non-zero value (indicating that

changes were made) calls displayO.

0

F4 -EDIT

Saves current text screen, calls retrievedataO and if this routine returns a non-zero
valule, calls change(). Then, if changr0 returns a non-zero value, routine display()

is called, followed by edit() and flag "changes" is set TRUE. The saved text is then
restored to the screen, the cursor is repositioned and "get-choices" is set TRUE.

I N'ASIIS

ERL-0511-RE UNCLASSIFIED

F5-SAVE 4

Calls function change() and if this returns zero, prints an error message and sets
"get-choice" TRUE. Otherwise calls save-fileO.

F6 -DELETE •

Prompts operator for name of file to be deleted. If operator confirms intention to

delete the named file, constructs file path name and uses Turbo C function 'removeO'
to delete the file.

F7 -ADD TEST

Calls retrievedataO and if the return value from this function is non-zero calls
functions initialiseO, paramdataO and entercomO (placing the return value from
this last function in variable "numtests"), and sets "get-choice" to TRUE. If the
return value was zero then no action is taken.

F8 -RENAME

Prompts user for old and then new file names, constructs the full path file name of
both files and uses the Turbo C function rename() to change the file name.

F9-CONTINUE

Calls retrieve dataO and asr Ins the return value to variable "numtests".

If flag "getchoice" is now set to TRUE the function loops back to accept another

operator file menu option. Otherwise sets main program loop variable "loop" - to
FALSE, if the last option invoked was F9 and "numtests" was set to a non-zero

value, or else to TRUE.
The function returns the integer variable "numtests".

7.2.3 USTFILES 0
Called from get-input 0 or from file-inputO. No parameters passed to the function.
Calls no other function.

Description - Displays all file names in the current test directory (this directory is
specified by the macro definition "PATH" included with the module declarations) 0
with creation date and time, by using the Turbo C findfirstO funct n. The function
returns no value.

UNCLASSIFIED ERL-0511-RE

7.2.4 EDIT()

Called from fileinputO or from entercomO. The number of the test to be edited
"testnum" is passed to the function.

Calls functions displayO and change() (both in module UTILITIES.C) and getkeyO.

Description - If operator indicates that the tests should be displayed (option F1)

then subroutine displayo is called, and editO is recursively called until the
operator does not choose to redisplay the tests. If the operator instead chooses to
edit the data then function change() is called and if this function returns a non-zero
value function displayo is called. Function editO is then recursively called until

* the operator indicates that no further changes to the data need be made.

7.2.5 RETRIEVEDATAO

Called from function file inputO. No parameters passed to the function.
Calls no other function.

Description - After the operator has entered the name of the file from which the

data is to be retrieved, the full path name is constructed. If the relevant file is not
able to be opened an error message is displayed to the operator and the function

returns no value to fileinputO. Otherwise all relevant file data is read into
* memory and the parameter "nc" is set accordingly.

The function returns the number of tests read into memory.

7.2.6 KEYBRDINPUTO

Called from get-inputO. No parameters passed to the function.
* Calls functions initialiseO, paramdataO and entercom.

Description - Subroutine initialise() is called to display the relevant parameter
proforma and then subroutine paramdata0 is called to collect all the operator

parameter data input. Function entercom0 is called to collect the user command line
instruction and the return value from this function is assigned to variable "num"
which is then returned by keybrd-input 0 to the calling function.

7.2.7 INrUALISE0

Called from function keybrd-inputO, file_inputO or from change() (in module

UTILITIES.C).
Calls getkey0.

Description - If the number of paths for the relevant tests "nc" is zero (indicating
* that the function was called from keybrd-input0) the operator is prompted to

specify the number of paths. T corresponding proforma for the number of paths is

then displayed to the operator.
This function returns no value.

ERL-051 1-RE UNCLASSIFIED

7.2.8 PARAMDATAO

Called from keybrd-input0 or from fileinputO. No parameters are passed to the

function.

Calls functions get.entry0 and print-errorO.

Description - Calls getentry0 for each parameter and places the return value 0
from this function into variable "num". This variable is then checked for legal

limits and if outside such limits routine printerror() is called to display an error to

the operator and prompt for parameter re-entry. Parameter values for oscillator

frequency and level are then initialised. The function returns no value.

7.2.9 GET.ENTRY0

Called by function paramdataO. The variable "cursor", containing the current

position of the cursor, is passed to the function.

Calls getkeyO, helpO, printerror0 and inputstringO. •

Description - The cursor is positioned at the relevant parameter and if the

operator invokes F1 (help) the current text screen is saved, the function help() (in

module MENU.C) is called, the text screen is restored to the screen and the cursor is

repositioned. If the operator enters an invalid key subroutine print_errorO is called

and then getkeyO is called to get the next user keystroke. Function input-string0 is

called to enter the operator keystrokes as a string and the macro "valueO" (defined

in the declarations of module DATACOL.C) is used to convert this string into a

floating point value.

The function returns the floating point value of the operator entry.

7.2.10 PRINT_ERROR0

Called from get-entryO, param_data0 or from change-params0 (in module

UTILITIES.C). The cursor position "row" is passed to the function.

Calls no other function. •

Description - Positions cursor, displays error message for two seconds and erases

error message. No value is returned by this function.

7.2.11 ENTERCOM0 •

Called from keybrdjinputO or from fileinputO. A pointer to the variable "count",

which contains the total number of tests in memory, is passed to the function.

Calls functions getkeyO, get.commandO, helpO, utilitieso, edito and save fileo.

Description - Displays relevant proforma, ie. for either one or two paths, to the 0

operator. Waits for operator keystroke (function getkeyO). If F2 is selected this

request is ignored. If the operator enters other than a utilities option, then function

get commandO is called to collect the command line instruction. If the return value

from get.command0 is zero, ie. the command was not valid, then entercomo is

recursively called; otherwise all utilities options are displayed to the operator

UNCLASSIFIED ERL-0511 -RE

and getkeyO is called to input the operator's choice. The function loop flag "recur"
• is set TRUE if this option is F1 (HELP) or FALSE if this option is F7 (ADD OSC

TONE) or F8 (ADD PATH GAIN). For all other options "recur" is set TRUE.

F-HELP

Text screen is saved, function help() is called and the text screen is restored.

F2-SAVE AS TEST <test numbers>

* Function utilitiesO (in module UTILITIES.C) is called and the variable containing

the number of tests in memory ("cnt") is incremented. The text screen is then saved
and a message indicating that the data is being saved is displayed to the operator

for one second. The text screen is then restored and "recur" is set TRUE.

F3-CHANGE PARAMS

Function utilities() (in module UTILITIES.C) is called and then the cursor is restored
to its previous position and "recur" is set TRUE.

F4-FILE

Functions edit() and then save file() are called to allow the operator to make last
minute changes and to save the data, respectively. From this option the routine

* returns.
The value returned is "cnt" - the number of tests currently in memory.

FS-DISPLAY

* The current text screen data is saved and if there are no tests currently in memory
this is indicated to the operator. Otherwise, function utilities() (in module
UTILITIES.C) is called to display all test data. The saved text data is then
restored to the screen and "recur" is set TRUE.

F6-REENTER COMMAND

"recur" is simply set to TRUE.

F7-ADD OSC TONE

Function utilities() (in module UTILITIES.C) is called and the cursor is then
repositioned to its previous position.

0IC SIFE

ERL-051 1-RE UNCLASSIFIED

F8-ADD PATH GAIN

Saves the text screen and calls utilities() (in module UTILITIES.C). Then restores
the saved text screen and restores the cursor to its previous position.

If flag "recur" has been set then entercomO is called recursively. Otherwise, the
cursor is repositioned and the program waits for an operator keystroke. The
program then actions the relevant utilities option as above.

7.2.12 GETCOMMANDO

Called from entercomO or from change() (in module UTILITIES.C). Parameters
passed to the routine in the function call are; "keystroke" - the integer value of the
key last entered by the operator, "i" - a pointer to the array index of the first
parameter code entered by the operator, "j" - a pointer to the array index of the

second parameter code entered by the operator, "first" - a pointer to the initial
(double precision floating point) value that the test parameter(s) will take, "last" -
the final (double) value of this parameter(s), "step" - the (double) value of the
increment by which this parameter(s) shall be changed, and "time" - the (double)
value of the time to be taken for each step increment.

Description - The keystroke made by the operator is first echoed to the screen and
the remainder of the command line instruction is read. The test parameter code(s) is
checked against all valid codes (held in external array comtable[]). If an "&"
character was detected in the command line instruction then variable "j" is set to
the relevant code. If an "&" was not detected then "j" is initialised to -1. If an
illegal value or parameter code was entered by the operator then an error message is
displayed for two seconds and the function returns a value of zero to its calling
function. Otherwise the function returns a value of one.

7.2.13 SAVEFILEO
Called from functions entercomO and file-inputO. The variable "numtests"
containing the number of tests in memory is passed to this function.
Calls getkeyO and input-stringO.

Description - Loop flag "repeat" is set FALSE. Then the operator is prompted to
enter the name of the file to which this data should be sent. Function getkey is
called to return the integer value of the next operator keystroke and if this is
RETURN ie. no save is required, then the function returns. Otherwise the file name
is read in by function input-string0 and the program checks (using Turbo C function
findfirsto) that this file does not already exist. If the file does exist then the
operator is asked whether that file should be overwritten and function getkeyO is
called to get the operator response to this prompt. If the operator response was not
in the affirmative then "repeat" is set TRUE and the function loops around to the
beginning. Otherwise the data is written to the named file. The function returns no
value.

UNCLASSIFIED ERL-051 1-RE

* 7.3 Module UTILITIES.C
This module contains the following five subroutines.

* UTILITIES 0

• CHANGE()
* CHANGEPARAMS 0
* INPUTSTRING 0

* DISPLAY 0

7.3.1 UTILITIESO
Called from functions entercomO (in module DATACOL.C), or from menu() (in
module MENU.C). A variable number of parameters are passed to this function.

The first parameter, an integer representing the function to be performed, is always
passed and is stored in variable "func".

* Calls functions change-paramsO and display(.

Description - If "func" is F2 or F5 then the next parameter passed in the function

call is read into integer variable "count". Descriptions of the subsequent actions

taken for the possible values of "func" are as follows.

F2-SAVE AS TEST <test number>

Reads successive six parameters passed in the function call (two integers followed

by four double precision numbers) and stores these in the relevant elements of the
* global structure array "test".

F3-CHANGE PARAMS

Calls change._paramsO.

FS-DISPLAY

Calls display(.

F7-ADD OSCILLATOR TONE

Prompts operator to enter oscillator frequency and then level. Stores these in

elements 21 and 22 of structure array "test".

UNCLASS.EIED - A7

ERL-051 1-RE UNCLASSIFIED

F8-ADD PATH GAIN

Prompts user to indicate which path (signal or interference) is to have the gain. If

an illegal response is entered the function returns, otherwise the operator is

prompted to enter the gain required. The actual gain achieved will then be

displayed to the operator. This gain is stored in the relevant element of global

simulator parameter array u[I and the function returns the value "x" containing an

integer representing the path that has a non-unity gain. This is required by the

calling function as a measurement of the relevant input signal must next be made to

enable the simulator to recalibrate its path parameters.

In all cases (apart from option F8) the function returns no value.

7.3.2 CHANGE 0

Called from utilitiesO or editO. The integer value "n", representing the total
number of tests in memory, is passed to the function.

Calls functions getkeyO, displayO, input-stringO, utilitiesO, get-commandO,

initialiseO and change-paramsO.

Description - The operator is prompted to enter the number of the test to be edited

and getkeyO is called to input the user's response. If ESC is entered then the

function returns with a return ,alue of zero, indicating that no changes were made to

the data in memory. If option F1 (DISPLAY) was specified then function displayO

is called ta display to the operator all test data currently in memory. The function

input-stringO is then called to input, as a string, the operator response. If, after

conversion to an integer, this value is greater than the total number of tests in
memory an error message is displayed and the function returns with a value of zero.

Otherwise the operator is prompted to indicate which data is to be edited. The

following summarises the actions taken for each legal user response.

T-OSCILLATOR TONE

Calls utilities() then places the entered values for tone frequency and level into the

structure "test". The function then returns with a value of one, indicating that

changes have been made to the data in memory.

G-PATH GAIN

Calls utilitiesO then returns with a value of one.

C-COMMAND LINE

Displays relevant command line prompt for the number of paths indicated by the

data in memory. Calls getkeyO and then get-command0 to input the command

a, . . .• -°A , . .

UNCLASSIFIED ERL-0511 -RE

instruction entered by the operator. If the command entered was a valid command

then all the data for the command instruction is stored in structure array "test" and

the function returns with a value of one. Otherwise the function loops around and

prompts the operator again to enter a command line instruction.

P-PARAMETER DATA

Calls initialiseO (in module DATACOL.C), to display the proforma applicable for

the number of paths indicated by the data now in memory and fills it out with that

data. Then the function calls change-paramsO to allow the operator to edit this

data and finally the new edited data is stored in place of the old data. The
function returns with a value of one.

7.3.3 CHANGE PARAMSO
Called from changeO. No parameters are passed to the function.

Calls functions getkeyO, helpO, input-string0 and print-errorO.

Description - Calls getkeyO to return the next operator keystroke and if this is

ENTER returns to change() with a value of zero. The actions taken for other valid

operator responses are as follows.

F-HELP

Saves current text screen, calls helpO, restores the text screen and repositions the

cursor.

DOWNKEY (Down arrow key)

If not already at the page bottom, moves cursor down a row.

UPKEY (Up arrow key)

If not already at the page top, moves cursor up a row.

DEFAULT

Calls inputstringO to read operator keystroke as a string and if "I" was entered

(indicating infinite value) assigns a value of 1.OE11. Checks for legality of entry

and if invalid calls printerrorO to display error message. Otherwise the value is

echoed to the screen and the function returns with no value.

7.3.4 INPUTSTRING0

Called from utilities() or from get-entry0 (in module DATACOL.C). An integer "k"
is passed to the function representing the integer value of the operator keystroke,

ERL-051 1-RE UNCLASSIFIED

and the address of the array str[] in which the entry string will be stored is also

passed.

Description - Calls getkey0 to input the rest of the entry string, character by
character, into array str[]. If an invalid keystroke is made it is ignored.

7.3.5 DISPLAY()

Called from functions utilities() or from edit() (in module DATACOL.C). The
function is passed an integer "c" which contains the total number of tests currently in

memory.

Calls no other function.

Description - Displays tests, two per page, until the last test has been displayed or

until the user enters a key other than ENTER.

7.4 Module MENU.C
This module contains the following eight subroutines.

* MENUOPT0

• BOOT ()
" MENUS

* HELP ()
* DRAWBORDER 0
* MAINWINDOW 0
* STATUSLINE 0
a GPRINT 0

7.4.1 MENU_OPTO
Called from Maino. The function is passed the integer value representing the

option that is to be implemented.
Calls functions help), format-dataO, bootO, menusO and measandcalO.

Description - Takes one of the following seven possible paths depending on the

value of the integer passed in the function call.

Fl-HELP

Calls function help 0

F2-RESET

Calls function format-data 0 in module FORMAT.C.

40.... I ti-r" A ee,:r,-

UNCLASSIFIED ERL-051 1-RE

F3-BOOT

Calls function boot 0.

* F4-DISPLAY

Calls function menus 0.

F5-MEASURE

Calls function menus 0.

F8-GAIN

* Calls function utilities 0 and assigns a return value to variable 'point', indicating

the path to which the gain should be applied. Then calls measandcal 0 with

function call parameter 'point' to make a measurement of the relevant input.

* FIO-QUIT

Requests user confirmation and, if this is given, exits the program. Otherwise no

action is taken.

* The function returns no value.

7.4.2 BOOT

Called from menuopt 0. No parameters are passed to the function.

• Calls function send 0 in module IO.C, and function format-data () in module

FORMAT.C.

Description - Displays a message that parameter data is being sent to the

simulator and calls function send 0 to reset the simulator. There is then a delay of

* three seconds (the reason for this is discussed under section 9) and formatdata0 is

called to send all current parameter values to the simulator.

The function returns no value.

7.4.3 MENUS()

Called from menu-opt 0. An integer value represented by the predefined integer

'type' is passed to the function.

Calls functions getkey 0, display 0, menus 0 and measandcal 0.

ERL-0511 -RE UNCLASSIFIED

Description - A menu is displayed to the operator depending on the value of 'type'.

DISP

The operator can choose from F1 (to display user values) or F2 (to display all scaled
parameter values last sent to the simulator). GetkeyO is then called to input the

operator's choice.

ESC 0

The function returns.

F1

Calls function displayO then calls menus() recursively.

F2

Displays parameters last sent then calls getkeyO and if user keystroke is ESC then 0
returns. Otherwise menus() is called recursively.

7.4.4 HELP()

Called from functions getjinputO, file inputO, get entryO, entercomo, change(),
change-paramsO, menu.optO and menusO. No parameters are passed to the

function.

Calls no other function.

Description - Displays menu options to the operator and, depending on operator

choice, displays either the relevant text information screen or the relevant sub-

menu.

The function returns no value.

7.4.5 DRAWBORDER()

Called from function helpO.

Calls no other function.

Description - Draws a two-line border around a flood-filled screen.

7.4.6 MAINWINDOWO

Called from function helpO. The character string "header" containing the line to
appear at the top of the window is passed to mainwindowO in the function call.

Calls function drawbordero.

UNCLASSIFIED ERL-0511 -RE

Description - Prints the header string at the top of the screen and calls function

* drawborder(to set up the window.

7.4.7 STATUSLINE0
Called from function help(). The character string "msg" is passed to statuslineO in

the function call.

0 Calls no other function.

Description - Prints the message string contained in "msg" at the bottom of the

screen page.

7.4.8 GPRINTF0

Called from function helpO. A variable number of parameters are passed in the

function call. The first two of these parameters are the integers "xloc" and "yloc",

respectively denoting the x-and y-coordinates of the starting position on screen for

* the character string to be displayed. The character string to be output is passed to

the routine at the address denoted by the third function call parameter, "format".

Calls no other function.

Description - This function is used in the same manner as the textual "printf" C

* statement to print a string to a graphics screen. Cursor row position is then

incremented by a standard amount.

7.5 Module FORMAT.C
This module contains three subroutines.

* FORMATDATA (

* CONVERTTODECIMAL 0

* PRINTMEAS 0

* 7.5.1 FORMAT_DATA0

Called from main() or from measand calO (in module CALIBRATE.C). A variable
number of parameters are passed to the function. The first, "coin", indicates the

relevant command option that is to be performed, and the second, "indx", indicates

whether all or a particular parameter is to be formatted for transmission to the

simulator.
Calls functions sendO and receive() (in module IO.C), print-measO and

convert to decimal().

* Description - The routine takes one of three possible paths of execution depending

on the value of "coin":

ERL-051 1-RE UNCLASSIFIED

SET 0

Parameter values are converted into an ASCII string:-

"P (indx value) \r\n"

where indx and value are two and four characters in length respectively and "\r\n"
represents a carriage return followed by a line feed.

These are then sent as arguments to the function send() and simulator response is

waited on by a call to function receive). This option automatically invokes the
next option. 0

RESET

This sends a sequence of four command instructions to the simulator by calling send()

and then receive() (in module IO.C). Value "x" is then set to 0. •

MEASURE

Calls sendO to send a command to the simulator instructing it to initiate the

measurement procedure. The measured values are then read and converted from a

string of three sets of integers to a double precision floating point number by function

convert-todecimal(). The function then checks that these measurements are valid.

If not, the function loops around to read the next measurement data sent by the

simulator and received by the controller. If the value received by the controller
("number") is zero, then the peak value is also set to zero; otherwise the peak value

is multiplied by 2" '* The measurement voltage is then calculated as:
2.5 (numberA/204800

If the measurement point is at the output, this value is further multiplied by

5.1641272. If "indx" is zero, ie. measurement is continuous, function print-measO is 0
called to print out the voltage and peak voltage. Otherwise the measured values

will be averaged over the required time period and then displayed. The value of
"x" is then set to (1.25 / this voltage). Function sendO is again called to instruct the

simulator to stop measurement and function receive() is called to receive the

simulator response indicating that measurement has ceased.
The function returns the value "x".

7.5.2 CONVERTTODECIMALO

Called from function formatdataO. A hexadecimal number is passed to the
function in the character array "hexnum".

Calls no other function.

Description - Converts hexadecimal characters passed to the function in

"hexnum" to a long integer. The function then returns that integer to function

formatdataO. If any of the original hexadecimal characters were null (that is, an

AA ILUQ -C-MmpI

UNCLASSIFIED ERL-0511 -RE

* invalid quanitity was measured by the simulator), the function immediately returns

the value -1.

7.5.3 PRINTMEASO

Called from function format-data(). The function is passed an integer denoting the
* point in circuit at which measurement was made by the simulator, the measured

voltage level, and the peak value of that measurement.

Calls no other function.

Description - Calculates and prints out the relevant measurement from the
* information given in the function call arguments. If the point for measurement was

at one of the inputs then the voltage rms and peak are displayed. If the
measurement was at one of the outputs then the rms value is printed and the signal-

to-noise ratio is calculated and displayed in dBs.

* 7.6 Module IO.C

This module contains the following four subroutines.

* COMSINIT 0
* COMSRESTORE 0
* SEND ()
* RECEIVE 0

7.6.1 COMS-INITO

Called from MainO. No parameters are passed to the function.

Calls assembly routines rxfshO, txfsh0, initvO.

Description - Sets the link communication parameters, via Turbo C function

bioscomO, then calls each of the routines listed above to flush receive and transmit

* buffers and install interrupt service routine, respectively.

7.6.2 COMSRESTOREO

Called from MainO at exit, by the previously installed Turbo C function atexitO.

No parameters are passed to the function.

• Calls rxfsh0, txfsh0 and restvO (in module ASYNC.C).

Description - Calls each of the above routines to flush receive and transmit buffers,

and install/restore the original interrupt vector contents.

* 7.6.3 SEND()
Called from Maino, boot() and formatdata). The address of the pointer variable
"str", that contains the data that is to be sent by the function to the simulator, is

passed to send().
C ls assemblh routine txstrO (in module ASYNC.C).

ERL-051 1-RE UNCLASSIFIED

Description - Until a null character is read, th.! contents of "str[J" are sent,
character by character, to the simulator via function txstrO.

7.6.4 RECEIVE()

Called from MainO, boot() and formatdataO. The integer value of the response

character expected to be read is passed in the function call to receive).
Calls function rxstrO (in module ASYNC.C).

Description - The function calls rxstrO and waits until the response character

expected is received. Then, depending on this response character, the function
either waits to receive a carriage return/ line feed pair, or reads a character string
into array variable "string[]".

The function returns no value.

7.7 Module SCALER.C
This module contains the following six subroutines

* SCALEINPUT 0
" SCALELEVELS 0
" SCALEOFFSET 0
" SCALEDELAY 0
" CALCFDCOEFF 0
* SCALEOSC 0

7.7.1 SCALEINPUTO

Called from MainO. Integer variable "p", representing the parameter(s) to be
scaled, and double precision floating point variable "val", representing the
unscaled value of the relevant parameter, are passed to the function in the function

call.

Calls functions scalelevelso, scale_offset(, scaledelay(, calc_fdcoeff() and

calcoscO.

Description - Depending on the value of "p" one or all of the above functions are
called. In each function call (except for scale-oscO which has no function call
parameters) the parameters "p" and "val" are passed and these are represented by
"indx" and "value" in each of the called functions.
The function returns no value.

7.7.2 SCALELEVELSO

Called from scaleinputO.

Calls no other function.

Description - The FPU gains are calculated as follows and placed in the relevant

elements of global array "uf[":

Nondiversity case:

UNCLASSIFIED ERL-051 1 -RE

scalel = 1 + 1/sni + 1/sil
temnpi = gwl + swl + sw2 +sw3 +sw4

u[52 (gan sw) = 0305(sw3/ (2tern~xscI)
u[53] (gain sw3) = 20305 (sw3 / (2xtemplxscalel))2

u[54] (gain gwl) = 20305 (gwl / (templxscalel))2
u[56] (gain sn1) = 20305 (5 /(sn1xscae1xFB1))2

u[58] (gain sil) = 20305 (1 / (silxscale1))2
u[60] = -1

* Diversity case:

scalel = 1 + 1/sni + 1/sil
scale2 = 1 + 1/sn2 + l/si2
temnpi = gwl + swl + sw2

*temp2 =gw2 +sw3 +sw4
u[521 (gain sw3) = 20305 (sw3 / (2xtemp2xscale2))2
u[531 (gain sw4) = 20305 (sw4 / (2xtemp2xscale2))2
u[541 (gain gwl) = 20305 (gwl / (templxscale1))i

u[55] (gain gw2) = 20305 (gw2 / (temp2xscale2))2
* u(561 (gain sn1) = 20305 (5 / (snlxscale2xFB1))2

u[571 (gain sn2) = 20305 (5 / (sn2xsca~e2xFB2)2
u[58J (gain sil) = 20305 (1 / (si1xscaIe1))2

u[59] (gain si2) = 20305 (1 / (si2xscae2))2
u[601 = 0

u[501 (gain swi) = 20305 (swi / (2xtemplxscae))2
Iu[511 (gain sw2) = 20305 (sw2 / (2xtemplxscalel))2

*NOTE: For explanation of FBI and FB2 refer to the Cossor CSP1250 technical
manual.

The function returns no value.

0 7.7.3 SCALEOFFSET()
Called from scale-inputO.
Calls no other function.

* Description - The frequency offsets for path I (fol) and path 2 (fo2) are scaled and
placed in the relevant elements of the global FPU parameter array as follows:

I N SSIDA

ERL-051 1-RE UNCLASSIFIED

u[lO] = fr(fol) x 231 / 10000
u[11] = in(fol) x 216 /10000

u[12] = fr(fo2) x 2"' / 10000
u[13] = in(fo2) x 21/ 10000
(Where frO and inO indicate fractional and integer portions respectively)

The function returns no value.

7.7.4 SCALE.DELAYO

Called from function scale-inputO.

Calls no other function.

Description - The user delay values are scaled by multiplying them by 10 and

rounding them to an integer value.

The function returns no value.

7.7.5 CALCFDCOEFFO
Called from scaleinputO.

Calls no other function.

Description - The algorithm for calculating fade coefficients (the Hilbert filter

coefficients for the simulator) from the fade rate f are as follows:

(i) e =-f x 10(6-1) (The fade rate is scaled so that it is always in the range 7-100)

(ii) el =e / 2000

(iii) BM = [(1000 / e)1x 0.9574]2

(iv) qa = 2Ilxelxl.32002

qb = 21"Ixel xO.208123

qc = 21-xel xO.8742562

qd = 2rxelxl.41585

(These are temporary working variables)

(v) ci = -2 x exp(-qa)xcos(qb)

_cl = (ci + I) x 215

(vi) u[15+7xi] =(round)_ci (i indicates which skywave path)

(This element holds the second of the filter coefficients)

(vii) c2 = [ci /(2xcos(qb))1
2

c2 = c2 x is

UNCLASSIFIED ERL-0511-RE

(viii) u[16+7xi]=(round)_c2

(This element holds the third of the filter coefficients)

(ix) cO=1 +cl +c2

_cO=cOx 2'xBMx4

(x) u[14+7xil = (round)_cO

(This element holds the first filter coefficient)

(xi) dl = -2 x exp(-qc) x cos(qd)

Sdl = (dl + 1) x 2'

u[18+7xiJ = (round)_dl

(This element holds the fifth of the filter coefficients)

(xii) d2 = [dl/(2xcos(qd))]
2

* _d2 = d2 x2
is

u[19+7xi = (round)_d2

(This element holds the sixth of the filter coefficients)

(xiii) dO= l+dl+d2

SdO = dO x2 i s xBMx2

u[17+7xil = (round)d0

(This element holds the fourth of the filter coefficients)

The function returns no value.

7.7.6 SCALEOSCO

Called from function scaleinputo.

Calls no other function.

Description - The oscillator frequency entered by the operator is scaled by (5000Hz
= 32768) and the voltage level is scaled by (IV = 2317).

The function returns no value.

* 7.8 Module CALIBRATE.C

This module contains the MEASANDCAL0 subroutine only.

7.8.1 MEASANDCALO

Called from Main() and from menusO and menu.opt0 (in module MENU.C). The

* integer variable "indx" is passed to the function indicating the point in circuit at

which measurement should be made by the simulator.

Calls formatdataO (in module FORMAT.C).

Description - "indx" is multiplied by 2560 and placed in element [631 of global

0 array "u[]". FormatdataO is then called to send this value to the simulator. The

ERL-0511 -RE UNCLASSIFIED

operator is then prompted to apply the relevant signal and to specify the
measurement period. Format-data() is again called, this time to initiate the
measurement. The return value from this function is placed in the double precision
variable "gain" which is divided into high and low bytes and placed in the
relevant elements of "u[]".

The function returns no value.

7.9 Module LOGGER.C

This module contains the LOG-DATA 0 subroutine only.

7.9.1 LOGDATAO 0
Called from mainO. The function is passed no parameters in the function call.
Calls no other function.

Description - The first time the function is called it displays the logging headings
at the top of the screen (and printer page or file if applicable). Each subsequent
time it is called, the test parameter(s), its incremental value and the time of the
test increment are displayed to the screen, (and to the printer/file if specified). To
the right of the screen all parameter values for the current test configuration are

displayed.
The function returns ro value. 0

8 FUTURE EDITING OF THE SOFTWARE

When making changes to the controller package, it is important to remember that changes S
involving functions which rely on the inclusion of library or include files, or which in some other
way alter the manner by which the routine should be compiled or linked, must be reflected in the

sim.mak MAKE file. As an aid to the programmer the include files needed for each routine, are
listed alongside the code printouts in the DDS documentation held by the author. These can be
made available on request. S

Currently the program is set up to allow a maximum number of twenty tests per file. This is an
arbitrary limit only and it can be changed by correcting the value of the global variable

MAXTESTS in module SIM.C.

To incorporate routines to control an RS232C link over which error counts can be communicated
from the error counters to the controller, the assembly routines of module ASYNC.C may be
copied (with modified port and register addresses) and routines similar to those of IO.C may be
used to interface the assembly code with the Turbo C routines. Since i/o with the error counters

should be straight-forward there is no need to use these assembly routines. The error counter-
controller communication can instead be written in Turbo C. The simulator-controller link code is

written in assembler only for speed problem reasons.

UNCLASSIFIED ERL-051 1-RE

9 COSSOR SIMULATOR PROBLEMS

The following is a brief note on some problems observed with the Cossor ionospheric simulator.

When the simulator is started from cold there appears to be a warming-up period during which
the simulator's response to controller commands is sluggish. Under this condition the simulator
will sometimes lock up the RS232C link making communication impossible. For this reason a
delay has been introduced in the program in places where commands sent to the simulator in

0 succession do not require acknowledgement. Since there is no handshaking between simulator

and controller (the link consists of only transmit, receive and signal ground lines) there is no way
of telling when the simulator is ready to receive data. While most controller commands initiate
an ASCII response from the simulator, some commands do not. If these commands are sent in
succession they may cause simulator problems, even if sent several times.

After prolonged communication between the controller and the simulator, the simulator will

sometimes jump to an irregular mode. This mode cannot necessarily be recognised from the
simulator audible output. It can only be distinguished by an analysis of the data error rates. To

date this mode has not been explained. The only way to correct it is to power the simulator off
• and on several times.

It should also be noted that the response time of the simulator to the controller commands is not
constant; response times between <0.1s and >1.5s per command instruction have been observed.
Synchronisation with the PTS is therefore difficult when response time is critical.

0|

ERL-051 1-RE UNCLASSIFIED

0

0

UNCLASSIFIED ERL-0511-RE

DISTRIBUTION LIST

Copy No
EXTERNAL

Defence Science and Technology Organisation

Chief Defence Scientist) 1
* First Assistant Secretary, Science Policy

Defence Science Representative London Cont. Sht. Only
Counsellor, Defence Science, Washington Cont. Sht. Only
Scientific Adviser - Defence Central Cont. Sht. Only
Scientific Adviser - Navy Cont. Sht. Only

* Scientific Adviser - Air force Cont. Sht. Only
Scientific Adviser - Army Cont. Sht. Only
Superintendent, Communications Engineering Division

Engineering Design Establishment 2

INTERNAL

Electronics Research Laboratory
Director 3
Chief, Communications Division 4
Research Leader, Communications 5
Head, Terrestrial Transmission Systems 6

Attention: Mr J. Tilbrook 7
Head, Radiowave Propagation 8

Attention: Ms P.L. Slingsby 9-10
* Technical Documentation Section, Communications Division 11-12

Libraries and Information Services
Librarian, Technical Reports Centre, Defence Library Campbell Park 13

Documentation Exchange Centre Defence Information ServicestBran'hc 15
* Joint Intelligence Organisation (DSTI) 15

Defence Science and Technology Organisation Salisbury, Main Library 16-17
Librarian Defence Signals Directorate Melbourne 18
Library ARL 19
Library MRL 20

* National Library of Australia 21
Australian Defence Force Academy Library 22

, United States Defense Technical Information Centre 23-34
a'-. ' United Kingdom Defence Research Information Centre 35-36

e r Director Scientific Information Services, Canada 37
New Zealand Ministry of Defence 38

Spares

Deferce Science and Technology Organisation Salisbury, Main Library 39-456,

